Skip to main content

Milvus

Milvus是专为嵌入式相似性搜索和 AI 应用而构建的向量数据库。

兼容性

仅可在 Node.js 上使用。

安装

  1. 在计算机上使用 Docker 运行 Milvus 实例 文档

  2. 安装 Milvus Node.js SDK。


    npm install -S @zilliz/milvus2-sdk-node

  1. 在运行代码之前设置 Milvus 的环境变量

    3.1 OpenAI


export OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HERE

export MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530

3.2 Azure OpenAI


export AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HERE

export AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HERE

export AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HERE

export AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HERE

export AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HERE

export AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HERE

export MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530

索引和查询文档

import { Milvus } from "langchain/vectorstores/milvus";

import { OpenAIEmbeddings } from "langchain/embeddings/openai";



// text sample from Godel, Escher, Bach

const vectorStore = await Milvus.fromTexts(

[

"Tortoise: Labyrinth? Labyrinth? Could it Are we in the notorious Little\

Harmonic Labyrinth of the dreaded Majotaur?",

"Achilles: Yiikes! What is that?",

"Tortoise: They say-although I person never believed it myself-that an I\

Majotaur has created a tiny labyrinth sits in a pit in the middle of\

it, waiting innocent victims to get lost in its fears complexity.\

Then, when they wander and dazed into the center, he laughs and\

laughs at them-so hard, that he laughs them to death!",

"Achilles: Oh, no!",

"Tortoise: But it's only a myth. Courage, Achilles.",

],

[{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }],

new OpenAIEmbeddings(),

{

collectionName: "goldel_escher_bach",

}

);



// or alternatively from docs

const vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), {

collectionName: "goldel_escher_bach",

});



const response = await vectorStore.similaritySearch("scared", 2);

查询现有集合的文档


import { Milvus } from "langchain/vectorstores/milvus";

import { OpenAIEmbeddings } from "langchain/embeddings/openai";



const vectorStore = await Milvus.fromExistingCollection(

new OpenAIEmbeddings(),

{

collectionName: "goldel_escher_bach",

}

);



const response = await vectorStore.similaritySearch("scared", 2);